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Research Design and Model Estimation Under the Partially Confirmatory Latent 
Variable Modeling Framework with Multi-Univariate Bayesian Lassos

Jinsong Chen and Yifan Zhang 

The University of Hong Kong 

ABSTRACT 
This research builds upon existing developments of the partially confirmatory approach by introducing 
predictors and regularizations to two additional parameter matrices: structural and differential coeffi-
cients. The outcome is a comprehensive framework called partially confirmatory latent variable model-
ing (PCLVM), where researchers can apply different regularizations to four parameter matrices 
individually or collectively, and in full or in part. With PCLVM, applied researchers can design a variety 
of research studies for different purposes, depending on the combinations of different regularizations. 
It employs a mixed estimation algorithm combining univariate and multivariate Bayesian Lassos for 
measurement- and structural-level regularizations with or without correlated residuals. The attractive-
ness of the proposed framework was demonstrated through a variety of typical cases that can be 
readily estimated and widely encountered in practice. Simulation studies and real-life data analysis 
were adopted to showcase the performance and versatility of PCLVM and its comparisons with 
exploratory structural equation modeling.
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1. Introduction

The latent variable modeling (LVM) framework is a power-
ful family of multivariate statistical techniques that provides 
researchers with different approaches to address major 
research processes. LVM covers a wide range of models, 
including factor analysis (FA), item response theory models, 
latent class analysis, and structural equation modeling 
(SEM) with latent variables. The flexibility of LVM allows 
researchers to fully exploit a variety of latent-variable con-
cepts such as factors, latent traits, abilities, personalities, atti-
tudes, and so on. As a result, LVM is widely used across 
many social and behavioral disciplines such as education, 
psychology, sociology, economics, and business, to name 
a few.

Within the LVM framework, there are two typical 
research approaches: exploratory and confirmatory. The 
exploratory approach is purely data-driven with little sub-
stantive knowledge available, while the confirmatory 
approach is theory-driven and requires strong substantive 
knowledge. In FA, the exploratory approach is known as 
exploratory FA (EFA), and the confirmatory approach is 
known as confirmatory FA (CFA). There are different per-
spectives to interpret the two approaches. From the perspec-
tive of data analysis, EFA can be referred to as unrestricted 
FA, with CFA as restricted FA or a constrained version of 
EFA. However, this perspective ignores substantial differen-
ces between the two approaches, like if the number of 

factors is known, if the model is identified, and if parameter 
estimation needs to be precisely accurate.

From the perspective of research design or scale develop-
ment, the two approaches can be perceived as two ends of 
an exploratory-confirmatory continuum covering varying 
amounts of theoretical or substantive knowledge available. 
For example, when developing a new measurement scale, 
researchers may have strong knowledge about what a subset 
of items measures, but not about others. The goal, therefore, 
is to find a more flexible approach that can cover the con-
tinuum more effectively under the LVM framework.

Recent advances in regularization methods offer greater 
flexibility to incorporate different amounts of substantive 
knowledge within existing procedures, covering a wider 
range of the confirmatory-exploratory continuum (e.g., 
Huang et al., 2017; Jacobucci et al., 2016; Lu et al., 2016). 
These methods allow researchers to specify a range of prior 
information, from complete theory-driven models to com-
pletely data-driven models, and everything in between. By 
allowing for greater flexibility, these methods can help 
researchers develop more accurate models that reflect the 
complexity of real-world phenomena. Regularization meth-
ods penalize the likelihood function with different types of 
parameter norms for model simplicity. Two typical cases for 
regression are the ridge (Hoerl & Kennard, 1970) and 
Lasso1 (Tibshirani, 1996) estimators, which correspond to 
the L2-norm and L1-norm penalization, respectively. Both 
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estimators can be solved analytically under the frequentist 
approach, and interested readers can refer to the literature 
for details (e.g., Hastie et al., 2009). Corresponding Bayesian 
regularization methods such as the Bayesian Lasso for 
regression can be implemented in a hierarchical formulation 
with appropriate priors (Park & Casella, 2008).

For LVM, both the frequentist regularization (e.g., 
Jacobucci et al., 2016) and Bayesian regularization (e.g., Chen 
et al., 2021; Feng et al., 2017; Lu et al., 2016) approaches 
have been implemented. Compared to the frequentist 
approach, Bayesian regularization enjoys the benefits of inter-
val estimates and related significance testing, straightforward 
estimation of the shrinkage parameters, and scalability to 
complex models that are analytically intractable. Moreover, 
Bayesian regularization can effectively address different chal-
lenges when regularizing the factor loadings and/or local 
dependence (LD, i.e., correlated residuals).

More recently, a partially confirmatory approach to psy-
chometric model with Bayesian regularization was introduced 
to tackle a series of psychometric issues (Chen, 2020, 2021b; 
Chen et al., 2021). It was based on the partially confirmatory 
factor analysis (PCFA), which can regularize both the loading 
structure and LD simultaneously for continuous data (Chen 
et al., 2021). Based on different types of Bayesian Lasso and 
some constraints, the approach offers a two-step procedure to 
tackle the two issues in sequence, which can provide greater 
flexibility for modeling, especially with multiple factors and 
many items. The approach was also extended to cover 
exploratory settings with unknown number of factors (Chen, 
2021a, 2023). The strength of the approach lies in its power 
to integrate partial knowledge, model simplicity, interval esti-
mate, and scalability to mixed-response format, missingness, 
and LD (Chen, 2022). Meanwhile, the potential of the 
approach is far from exhausted.

This research expands the PCFA approach by incorporat-
ing predictors and regularizations on structural parametric 
matrices. Specifically, it suggests combining PCFA with the 
multivariate generalized latent variable model (MGLVM; 
Feng et al., 2017), both of which involve latent variables, the 
Bayesian approach, and Lasso regularization. In the MGLVM, 
regularization occurs on the structural level, while the meas-
urement component remains strictly confirmatory. In con-
trast, regularizations in PCFA take place at the measurement 
level. By integrating both levels of regularizations, a compre-
hensive framework, partially confirmatory latent variable 
modeling (PCLVM) is established. This allows for the regu-
larization of different parameter matrices on both levels, 
either separately or jointly, as well as fully or partially.

Under PCLVM, one can come up with a variety of 
research designs that can be used for different purposes, 
depending on the combinations of different regularizations. 
While some designs can be addressed using alternative 
methods like exploratory SEM (ESEM, Asparouhov & 
Muth�en, 2009) or regularized SEM (Jacobucci et al., 2016), 
many can only be effectively explored through the PCLVM 
framework. Given that social and behavioral researchers 
often strive to discern causal relationships or root causes, 
modeling causation will become more accessible with both 

sophisticated structural designs (Pearl, 2009) and different 
regularizations acting as Occam’s razor (Blumer et al., 
1987). The estimation algorithm is mixed with univariate 
and multivariate Bayesian Lassos to accommodate measure-
ment- and structural-level regularizations, even with LD. 
Model estimation is implemented through the Markov chain 
Monte Carlo (MCMC; Gilks et al., 1996) method with the 
Gibbs sampler (Casella & George, 1992; Geman & Geman, 
1984). The MCMC algorithm will be implemented in an R 
package and will be made available online to assist future 
research efforts.

This paper introduces typical designs that can be readily 
estimated and encountered in practice. The identified 
designs serve as a starting point for researchers, offering 
practical and applicable solutions. However, it’s worth not-
ing that there are still unexplored designs and potential 
applications, awaiting further investigation in future 
research. The Bayesian inference with regularizations is pro-
vided, with technical details of the full conditional distribu-
tions for the Gibbs sampler. Moreover, we assess the 
empirical performance of the proposed methodology 
through simulation studies and utilize response data from 
the Trends in International Mathematics and Science Study 
to demonstrate real-life data analysis, accompanying with 
comparisons to the ESEM approach.

2. General Formulation

Assume that a set of observable random variables can be 
explained with some latent variable model under the context 
of social and behavioral research. Denote a random variable 
is a column vector for N individuals. Assume there are J 
outcomes Y ¼ Yjð Þ1�J , P predictors X ¼ Xpð Þ1�P, and K 
latent variables or factors F ¼ Fkð Þ1�K in the model, where 
Yj, Xp, and Fk are each an N � 1 random variable with sub-
scripts j ¼ 1, :::, J, p ¼ 1, :::, P, and k ¼ 1, :::, K: Typically, 
the outcomes are scale items or indicators with the factors 
as the underlying latent variables, and the predictors are 
observed demographic or background variables. Since the 
intercepts are of no interest in this research, all observed 
variables are assumed to be mean centered to simplify the 
formulation.

Under the PCLVM framework, both structural and meas-
urement components are integrated into one model with the 
following equations:

Y ¼ FA0 þ XH0 þ E, (1) 

and

F ¼ XB0 þD, (2) 

where E ¼ Ejð Þ1�J and D ¼ Dkð Þ1�K are the J measurement 
errors and K factor disturbances, respectively, and are 
assumed to be normally distributed with E � MVN 0, Vð Þ

and D � MVN 0, Uð Þ: Model parameters are included in the 
following matrices:

� A ¼ ajkð Þ is a J � K loading matrix;
� H ¼ hjp

� �
is a J � P differential coefficient matrix;
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� B ¼ bkp
� �

is a K � P structural coefficient matrix;
� V ¼ vjj0ð Þ is a J � J error covariance matrix;
� U ¼ ukk0ð Þ is a K � K disturbance covariance matrix.

All elements in matrices A, H, B and off-diagonal ele-
ments in V can be fixed (e.g., 0 or 1), freely estimated, or 
regularized when specification is unclear. On the measure-
ment level, factors are operationally defined by nonzero 
fixed or freely estimated loadings in A: All elements in U 
can be nonzero to allow for correlated disturbances. For V, 
when off-diagonal elements are assumed to be nonzero and 
regularized, it is equivalent to assume LD with correlated 
measure errors.

The indeterminacy of the latent scale can be fixed with 
two typical options. First, one loading per factor is fixed as 
one, and the corresponding item is called the reference indi-
cator. It sets the latent scale to the item and is usually 
referred to as the original solution. Second, factor variance 
is fixed as one, which is referred to as the standardized solu-
tion when the observed variables are also standardized. This 
option is more complex technically since we need to stand-
ardize the factors as dependent variables. But it is also more 
useful practically, especially when we are unclear which 
items can be used as reference, and will be the default 
option in this research. The two options are mathematically 
equivalent due to scale invariance.

In its most general form, all parameters in A, H, B and 
off-diagonal elements in V can be unspecified and regular-
ized separately or jointly with the L1 norm or Lasso by 

penalizing the log-likelihood (LLK) function as:

LLK þ kA
X

ajk2A�
ajk
�
�
�
�þ kB

X

bkp2B�
bkp
�
�
�
�þ kH

X

hjp2H�
hjp
�
�
�
�

þ kV
X

vjj0 2V�
vjj0
�
�
�
� (3) 

where LLK ¼ 2
N log Vj j − 1

2 tr SVð Þ with S ¼ ðY − FA0 − 
XH0Þ0ðY − FA0 − XH0Þ, and A�, B�, H�, and V� are the 
subsets of the vectorized matrices vec Að Þ, vec Bð Þ, vec Hð Þ, 
and vec Vð Þ, respectively, that are unspecified and require 
Lasso regularization, with kA, kB, kH , kV as the correspond-
ing shrinkage parameters. Lasso parameters A�, B�, H�, 
and V� can be selected through different design matrices.

The general formulation is visually depicted in Figure 1, 
showcasing a model encompassing six indicators, two fac-
tors, and two predictors. In this context, the elements within 
A, B, and H, along with the off-diagonal components 
within V, represent unspecified Lasso parameters. These 
parameters are indicated by dashed lines in the figure. This 
exploratory setting requires only minimal prior knowledge 
for specification. As more information becomes available, 
these Lasso parameters can be regularly specified and esti-
mated as free parameters or fixed, as shown by solid lines 
in the figure. Notably, irrelevant parameters are set to zero 
and omitted from the model. With full knowledge, the 
model becomes strictly confirmatory, and all parameters are 
either specified or fixed. Meanwhile, the framework reduces 
to the PCFA models when no predictors are included, indi-
cating that predictors are optional. However, by 

Figure 1. General form.
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incorporating predictors, it is possible to regularize two 
coefficient matrices, thereby enhancing the flexibility and 
scalability of the framework, as discussed below.

The general formulation, while flexible, presents chal-
lenges in terms of identification and estimation without the 
imposition of additional constraints. The identification of 
specific designs relies on the application of various combi-
nations of regularizations to the parametric matrices. To 
estimate these designs effectively, one must have access to 
complete conditional distributions, which need to be derived 
analytically and validated empirically. In the following, we 
concentrate on typical cases that have been successfully 
identified and are practically valuable as research designs.

3. Specific Design

3.1. Case One

This case exhibits an exploratory tendency, with minimal sub-
stantive knowledge available to specify the loading matrix A 
and structural coefficient matrix B: A can be mostly unspeci-
fied and regularized, and B can be fully unspecified and regu-
larized while the differential coefficient matrix H doesn’t exist. 
Specifically, only minimum knowledge is needed to operation-
ally define each factor (e.g., a few loadings per factor). In 
practice, it is more likely that each item is designed to meas-
ure specific factor and can be specified accordingly. The 
model remains meaningful for probing cross-loadings and 
structural coefficients simultaneously, although most of which 
can be minor. This approach aligns with the concept of more 
flexible representation in SEM (Muth�en & Asparouhov, 2012), 
where the strict requirement of many zero cross-loadings and 
structural coefficients under the confirmatory approach can be 
relaxed. But we offer more flexibility to address uncertainty in 
both the loading and structural coefficient matrices. This 
method is particularly useful in large-scale settings with 
numerous items, factors, or predictors. Note that when the 
predictors are categorical, it is equivalent to conducting mul-
tiple group comparisons and significant structural coefficients 
imply group difference. In the absence of predictors, the 
model reduces to the E-step in PCFA.

The technical challenge lies in regularizing two parametric 
matrices at the measurement and structural levels: A can be 
partially regularized and mixed with Lasso, free and fixed 
parameters while B is typically entirely regularized with Lasso 
parameters in the context of correlated disturbances (Figure 2).

3.2. Case Two

This case is confirmatory-inclined with a partially specified 
loading matrix. All elements in matrices B and off-diagonal 
elements in V can be unspecified and regularized, which 
means that local dependence can be accommodated. Here 
sufficient knowledge should be available to partially specify 
A with the minimum condition of one loading per item. 
This case is useful when there are uncertainties in both the 
structural coefficient and loading matrices, with concern of 
local dependence. In practice, B can be partially specified, 

resulting in less burden of regularization. When B is fully 
specified or does not exist, the case reduces to the C-step in 
PCFA in essence (Figure 3).

3.3. Case Three

This case can be considered a variation of the first case, also 
exhibiting an exploratory tendency. In this scenario, predic-
tors serve as causal indicators that define the factors and are 

Figure 2. Case one.

Figure 3. Case two.
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necessary rather than optional. As a result, each factor is 
defined externally by the predictors, rather than internally 
by the items. With the assistance of causal indicators, we 
can explore the pattern of the loading matrix, which can be 
entirely unspecified and regularized.

This situation arises when there is limited information 
about the measurement component, and the model is aug-
mented with ancillary covariates. The loading matrix A is 
entirely regularized with Lasso parameters, while parameters 
in the structural coefficient matrix B are specified as free or 
fixed as zero. It is important to note that only the standar-
dized solution is viable, as there are no items available to 
serve as reference indicators (Figure 4).

3.4. Case Four

This case represents a scenario where the measurement 
component including all item residual correlations are 
entirely exploratory, while the structural component is fully 
specified. This case is suitable for situations when there is a 
need to address potential local dependencies under Case 
Three (Figure 5).

3.5. Case Five

This design can be effectively utilized to explore the poten-
tial existence of structural effects, cross-loadings, and differ-
ential item functioning (DIF) effects concurrently. It’s 
suitable for exploring DIF and measurement invariance in 
complex scenarios and can serve as a follow-up to Case 1 
for further model investigation. The presence of any signifi-
cant differential coefficient hjp suggests that the probability 

of endorsing an item will differ for students with the same 
factor level but different predictor levels. In other words, 
there is a DIF effect of predictor p on item j:

The identification of structural effects can provide policy 
makers with valuable insights into significant differences 
between student groups. However, a substantial presence of 
DIF effects can challenge the assumption of measurement 
invariance, which is paramount for group comparisons 
(Bauer, 2017). PCLVM offers a more effective way to simul-
taneously investigate many possible DIF effects in a large- 
scale system compared to traditional analysis.

In this design, sufficient knowledge should be available to 
partially specify matrix A, with a minimum condition of 
one loading per item. It provides a flexible range, from a 
more exploratory approach (specifying few loadings per fac-
tor) to a more confirmatory approach (specifying one load-
ing per item). In practice, it’s common to specify most 
major loadings per factor, making the case more confirma-
tory. The model remains flexible and useful by accommo-
dating unclear cross-loadings and structural coefficients 
while simultaneously exploring possible DIF effects.

Technically, this case involves the regularization of three 
parametric matrices: A and H at the measurement level and 
B at the structural level. Specifically, A can be partially regu-
larized and mixed with Lasso, free and fixed parameters 
while H is typically regularized entirely. Meanwhile, B can 
be entirely regularized with Lasso parameters and correlated 
disturbances. Managing three matrices for regularization at 
two levels makes the algorithm complex and challenging, 
requiring univariate and multivariate Bayesian Lassos 
involving correlated residuals, which are not straightforward 

Figure 4. Case Three. Figure 5. Case Four.
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to derive analytically. Alternatively, B can be fully specified 
with zero-fixed and free parameters based on results from 
Case 1. This approach slightly simplifies the algorithm with 
only two matrices to regularize (Figure 6).

3.6. Case Six

This design is effective for investigating both structural and 
differential item functioning (DIF) effects, along with corre-
lated residuals at both the structural and measurement lev-
els. It can be seen as a variation of the fifth case, with the 
inclusion of local dependence. As shown in the figure, the 
loading matrix A should be partially specified with a min-
imum condition of one loading per item, while structural 
coefficients in B, differential coefficients in H, and off-diag-
onal elements in V can be unspecified and regularized. This 
case is particularly valuable when both DIF effects and local 
dependence are areas of concern.

Technically, this case entails the regularization of several 
parametric matrices: A and H at the measurement level and 
B at the structural level. The algorithm for this case is simi-
larly complex and challenging and can be combined with 
univariate and multivariate Bayesian Lassos, taking into 
account correlated residuals at both levels. Specifications for 
the loading matrix can be based on analyses from Cases 1 
or 3. As in Case 5, B can be fully specified with zero-fixed 
and free parameters, which simplifies the algorithm by 
reducing it to just three matrices that need regularization 
(Figure 7).

3.7. Case Seven

This design serves as an extension of traditional bifactor 
models, with regularization applied to a partially specified 
loading matrix and a fully unspecified structural coefficient 
matrix in the context of orthogonal factors. The general fac-
tor F1 represents a fundamental construct and is measured 
by all items. The special factors, F2 and F3, represents fac-
tors resulting from special characteristics of the model such 
as method, format, or testlet effects. While each special fac-
tor is typically defined by a subset of the items by design, 
regularization can help determine whether it is unintention-
ally measured by other items, providing insights for scale 
development. This case is also valuable for evaluating the 
impact of different predictors on general or special factors. 
In the absence of predictors, the model reduces to the 
PCFA for the bifactor setting, which can be used to assess 
the effect sizes of the special factors.

The technical algorithm is relatively straightforward, as the 
special factors are usually orthogonal to each other and the 
general factor, resulting in uncorrelated disturbances. 
However, this case can be extended to a more complex scen-
ario where multiple general factors exist, and their disturban-
ces are correlated with each other (though not with those of 
the special factors). This extension allows for the exploration 
of more intricate relationships in the model (Figure 8).

3.8. Case Eight

This design can be seen as a variation of the seventh case, 
with accommodation of local dependence but exclusion of 

Figure 6. Case five.

6 CHEN AND ZHANG



loading regularization. Specifically, the loading matrix A 
should be fully specified, while structural coefficients in B 
and off-diagonal elements in V can be fully unspecified and 
regularized. This case is particularly valuable when research-
ers are concerned about both structural effects and local 
dependence under a bifactor setting. Like the seventh case, 
this design can be extended to handle more complex scen-
arios where multiple general factors exist, and their 

disturbances are correlated with each other (but not with 
those of the special factors). This extension offers greater 
flexibility in exploring relationships within the model 
(Figure 9).

Figure 7. Case six.

Figure 8. Case seven.

Figure 9. Case eight.
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3.9. Bayesian Modeling and Estimation

The key to understanding the Bayesian Lasso is to turn the 
penalty part in Equation (3) into priors, with the shrinkage 
parameter as hyper-prior. Moreover, when appropriate priors 
are selected to maintain conjugacy, full conditional distribu-
tions are available for effective Gibbs sampler. The Bayesian 
model in hierarchical form can be developed as follows.

For item j, denote the row vectors of the loading matrix A 
and differential coefficient matrix H as aj and hj, respectively, 
for j ¼ 1, :::, J: Denote a�j and a��j as the subsets of Lasso and 
free parameters for aj, respectively, with K�j and K��j as corre-
sponding lengths. Note that K�j þ K��j � K since there can be 
fixed parameters in aj: Equation (1) can be reformulated as:

Y � MVN FA0 þ XH0, Vð Þ, (4) 
with

a��j � N lAj, RAj
� �

, (5) 

where lAj and RAj are the hyper-priors. Meanwhile,

a�j � N 0, TAj
� �

, (6) 

with

TAj ¼ diag s2
Aj1, :::, s2

AjK�j

� �
, (7) 

s2
Aj1, :::, s2

AjK�j
�
Y
K�j

k¼1

k2
A

2
exp −k2

As2
Ajk=2

� �
ds2

Ajk, (8) 

and

k2
A � Gamma aA, bAð Þ, (9) 

where typically aA ¼ 1 and bA > 0 (but small) are the shape 
and rate parameters, respectively (same below).

Different from aj, the differential coefficient vector hj is 
usually entirely regularized:

hj � N 0, THj
� �

, (10) 

with

THj ¼ diag s2
Hj1, :::, s2

HjP

� �
, (11) 

s2
Hj1, :::, s2

HjP �
YP

p¼1

k2
H
2

exp −
k2

Hs2
Hjp

2

 !

ds2
Hjp (12) 

and

k2
H � Gamma aH , bHð Þ: (13) 

In LD cases (i.e., Case 2, 4, 6, and 8), the residual covari-
ance matrix V is non-diagonal and Bayesian covariance 
Lasso will be used to regularize off-diagonal elements with 
double exponential priors:

p vjj0 jsVjj0
� �

j<j0 / s
−1

2
Vjj0exp −

v2
jj0

2sVjj0

 !

,

p vjjjkV
� �

/
kV

2
exp −

kV vjj

2

� �

,

pðsVjj0 jkVÞj<j0 /
k2

V
2

exp −
k2

VsVjj0

2

� �

,

(14) 

with kV � Gamma aV , bVð Þ: In no-LD cases (i.e., Case 1, 3, 
5, and 7), V is diagonal:

v−1
jj � Gamma aV , bVð Þ: (15) 

The above equations represent the hierarchical formula-
tion of the univariate Bayesian Lasso (e.g., Kyung et al., 
2010; Park & Casella, 2008), where there is individual s2 for 
each Lasso parameter. After integrating out s2, each Lasso 
parameter exhibits the desired conditional Laplace (i.e., dou-
ble-exponential) prior. However, such hierarchy is unsuit-
able for multivariate cases with correlated factorial residuals, 
as found in the structural model. Instead, we will formulate 
the structural model with a multivariate version of the 
Bayesian Lasso (Culpepper & Park, 2017), as follows:

F � N XB0, Uð Þ, (16) 

Upon vectorizing B, it can be fully regularized condi-
tional on U :

vec Bð ÞjU � N 0, U �TB
� �

, (17) 

where

TB ¼ diag s2
B1, :::, s2

BP
� �

, (18) 
s2

Bpjk
2
B � Gamma K þ 1ð Þ=2, k2

B=2
� �

, (19) 

and

k2
B � Gamma aB, bBð Þ: (20) 

Here, �
 denotes the Kronecker product, and aB and bB 

are hyper-priors. This implies that each structural vector 
bp ¼ b1p, :::, bKp

� �
will share the same s2

Bp for p ¼ 1, :::, P:
This shared structure is necessary for performing Lasso 
regularization when U is non-diagonal as demonstrated in 
Appendix A. After integrating out s2

Bp, the conditional prior 
of bp is proportional to a multivariate generalized asymmet-
ric Laplace distribution (Kozubowski et al., 2013).

For Cases 2 and 3, we only need to update the free 
parameters in vec Bð Þ, as B�� :

B��jU � N lB, U �RB
� �

, (21) 

where lB and RB are the hyper-priors.

U−1 �Wishart dU , RUð Þ, (22) 

In Case 7, the disturbances are uncorrelated, which 
means there are only diagonal elements in U:

u−1
kk � Gamma aU , bUð Þ: (23) 

With the above formulation, the full conditional distribu-
tions of all parameters can be obtained as shown in 
Appendix A, which can be used for MCMC estimation. An 
effective Gibbs sampler can be implemented by iteratively 
sampling from the conditional distributions. To obtain the 
standardized solution, one can keep standardizing F during 
each iteration, noting that Y and X should be standardized 
before sampling. Alternatively, one can also obtain the 
standardized solution post-hoc by rescaling the parameters 
with the variances of F, Y, X after sampling.

Bayesian Lasso cannot give exactly zero estimates for the 
Lasso parameters, which is needed to achieve model selec-
tion under the frequentist approach. One solution is to cre-
ate Bayesian credible intervals to assess statistical 

8 CHEN AND ZHANG



significance for the parameters. The highest posterior dens-
ity (HPD) intervals based on the MCMC iterations after the 
burn-in period is adopted. Posterior predictive (PP) p value 
can be used as a complementary statistic, considering 
Bayesian lasso is already a model selection technique. Chain 
convergence can be determined using the estimated poten-
tial scale reduction (EPSR), with 1:1 as the criterion. Gibbs 
sampler (Geman & Geman, 1984) is adopted as the estima-
tion algorithm. More technical details of implementation 
can be found in Appendix A.

4. Simulation Studies

Simulation studies were conducted to evaluate the perform-
ance of the PCLVM and comparisons with ESEM on Cases 
1 to 4. For data generation with or without LD, we set two 
population models with P¼ 9, J¼ 18, K¼ 3, and N¼ 1,000. 
True model parameters can be found in Figures B1 and B2 
in Appendix B, which is a symmetric design with each fac-
tor measured by six major loadings and regressed on three 
predictors. Meanwhile, LD terms were designed to be 
equally distributed within and between factors. For each 
simulation case, 100 datasets were simulated and analyzed.

4.1. Study One: Performance of the PCLVM

PCLVM models for Case 1 to 4 were used to recover the 
two population models. In Case 1 and 2, respectively, the 
first three and all major loadings for each factor were speci-
fied as free parameters while all other parameters in A and 
B were unspecified as Lasso parameters. In Case 3 and 4, 
the three nonzero coefficients in B were specified as free 
parameters with other coefficients fixed as zero. All parame-
ters in A were unspecified as Lasso parameters. Note that, 
for LD cases (i.e., Cases 2 and 4), all off-diagonal elements 
in V were unspecified and regularized with Lasso.

In the MCMC estimation, EPSRs were found to be no 
more than 1.1 within 10,000 iterations which were used as 
burn-in. Another 10,000 draws were used to obtain the con-
ditional distributions of parameter estimates. With the dis-
tributions, performance assessment was conducted based on 
the bias of the median estimates (BIAS) between the esti-
mates and true values, the related root mean square error 
(RMSE), the mean of the standard error estimates (SE), and 
the percentage of significant estimates at a ¼.05 based on 
the HPD interval (SIG%).

Simulation results were shown in Table 1, which were 
satisfactory in general (e.g., in terms of BIAS, RMSE, SE, or 
SIG%). When data were generated with LD, Cases 2 and 4 
with regularized V performed slightly better than Cases 1 
and 3, which ignored the LD structure. While there were 
some Type I errors (i.e., the SIG% of zero parameters) in all 
cases, the magnitudes of the inflated estimates were gener-
ally small and well below .1 (either the loading or structural 
coefficient).

4.2. Study Two: Comparison with ESEM

Surprisingly, we found that ESEM with target rotation 
implemented in Mplus (Muth�en & Muth�en, 2017) can only 
be applied to Cases 1 to 2 in the research designs. 
Moreover, while all elements in the residual matrix V can 
be estimated in Case 2, there is no regularization per se. 
Parameter estimates were shown in Table 2. Most estimates 
for both Cases were slightly worse than, but comparable to, 
PCLVM. The issues in Case 1 were the large Type I error 
rates for the zero loadings. More importantly, no SE can be 
estimated in either Case 2, suggesting that the point esti-
mates are unreliable or not trustworthy.

5. Real-Life Data Analysis

PCLVM is particularly beneficial in settings with numerous 
observable and latent variables, such as large-scale 

Table 1. PCLVM parameter estimates in Cases 1 to 4.

Data Generation w/o LD Data Generation with LD

Par TRUE BIAS RMSE SE SIG% BIAS RMSE SE SIG%

Case 1
a 0.7 0.005 0.021 0.032 1.000 −0.002 0.094 0.033 1.000
a0 0 −0.007 0.027 0.051 0.000 −0.015 0.045 0.059 0.023
b 0.3 0.009 0.029 0.020 1.000 0.031 0.041 0.020 1.000
b0 0 0.001 0.030 0.027 0.101 −0.001 0.030 0.027 0.097
u 0.3 −0.022 0.027 0.062 1.000 −0.049 0.050 0.071 1.000

Case 2
a 0.7 0.011 0.026 0.037 1.000 0.008 0.029 0.038 1.000
a0 0 −0.011 0.028 0.053 0.000 −0.019 0.033 0.052 0.003
b 0.3 0.007 0.029 0.020 1.000 0.007 0.029 0.020 1.000
b0 0 0.003 0.029 0.027 0.099 0.006 0.030 0.027 0.104
u 0.3 −0.032 0.034 0.064 1.000 −0.040 0.042 0.067 1.000
v 0.3 −0.024 0.038 0.035 1.000

Case 3
a 0.7 0.005 0.023 0.029 1.000 0.020 0.037 0.035 1.000
a0 0 −0.006 0.035 0.038 0.030 −0.010 0.036 0.041 0.031
b 0.3 0.000 0.030 0.019 1.000 −0.007 0.036 0.020 1.000
u 0.3 −0.015 0.035 0.048 1.000 −0.029 0.045 0.050 0.963

Case 4
a 0.7 −0.001 0.095 0.028 1.000 0.010 0.032 0.036 1.000
a0 0 −0.017 0.050 0.041 0.115 −0.013 0.037 0.041 0.030
b 0.3 0.021 0.035 0.018 1.000 −0.003 0.031 0.019 1.000
u 0.3 −0.049 0.055 0.054 1.000 −0.020 0.040 0.052 0.990
v 0.3 −0.022 0.040 0.035 1.000

Note. ‘a’ averaged across all major loadings; ‘a0’ averaged across all zero load-
ings; ‘b’ averaged across all non-zero structural coefficients; ‘b0’ averaged 
across all zero structural coefficients; ‘u’ averaged across all factorial residual 
covariance; ‘v’ averaged across all LD terms.

Table 2. ESEM parameter estimates in Cases 1 to 4.

Data Generation w/o LD Data Generation with LD

Par TRUE BIAS RMSE SE SIG% BIAS RMSE SE SIG%

Case 1
a 0.7 0.019 0.026 0.020 1.000 0.010 0.093 0.023 1.000
a0 0 −0.054 0.059 0.025 0.593 −0.061 0.072 0.026 0.604
b 0.3 −0.011 0.030 0.029 1.000 0.013 0.030 0.029 1.000
b0 0 0.022 0.037 0.030 0.109 0.016 0.034 0.030 0.080
u 0.3 −0.057 0.057 0.024 1.000 −0.104 0.104 0.022 1.000

Case 2
a 0.7 0.035 0.087 NA NA 0.029 0.105 NA NA
a0 0 −0.113 0.235 NA NA −0.119 0.254 NA NA
b 0.3 0.015 0.044 NA NA 0.028 0.052 NA NA
b0 0 0.040 0.104 NA NA 0.039 0.107 NA NA
u 0.3 −0.298 0.298 NA NA −0.298 0.298 NA NA
v 0.3 0.314 0.335 NA NA

Note. NA: (SE) not available.
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assessments featuring many background variables and scale 
items. The Trends in International Mathematics and Science 
Study (TIMSS) is an example of such a setting. Appendix C
presents scale items measuring three factors related to 8th 
grade mathematics learning in TIMSS 2019 (IEA, 2018): intrin-
sic motivation (F1), self-efficacy (F2), and extrinsic motivation 
(F3). Although each item is clearly designed to measure specific 
factor with major loading, unexpected cross-loadings are likely 
and merit further investigation. Additionally, Appendix C dis-
plays a range of demographic variables that could impact these 
factors. Three PCLVM models, Cases 1, 2, and 6 can be 
adopted to fit the data. In Case 1, we only specify three major 
loadings per factor, which allows for the simultaneous identifi-
cation of loading uncertainty, significant cross-loadings, and 
structural coefficients. Building on the above basic analysis, we 
can further investigate the local dependence of the residuals 
between items with Case 2 and differential coefficients of the 
predictors on the items for potential DIF effects with Case 6. 
For ESEM, only Case 1 is applicable. Responses from 2,073 
English students, after removing missing responses, are used 
for illustration.

Table 3 shows that all PCLVM-suggested models fit the 
data better than ESEM. It is worth noting that, while Case 6 
presents the best model, Case 2 is also acceptable and prob-
ably a better choice if the DIF effect is not of major 
concern.

Loading and structural coefficient estimates for Case 6 
can be found in Table 4. Most major loadings are estimated 
as expected, along with some significant cross-loadings 
which are small either in an absolute sense or in compari-
son to the major loadings. The only exception is item Y16, 
which may require revision. Except for four predictors, the 
magnitudes of significant structural coefficients are smaller 
than .1 and neglectable. Of special interests are X13, X17, 
X19, and X23, and the implications are quite straightforward 
except for X13. The negative effect of how far in education 
one is expected to go (X13) on self-efficacy and extrinsic 
motivation is counterintuitive. Ultimately, the results high-
light the importance of independent work (X19) in math-
ematics education.

Significant LD terms can be found in Table 5, the magni-
tudes of most are smaller than .1 and can be ignored. It is 
interesting to see that all LD terms larger than .1 occur 
within the same factors. The significant DIF effects can be 
found in Appendix D, the magnitudes of all are smaller 
than .1. It suggests that measurement invariance is not a 
major concern for this set of predictors.

6. Discussion

The LVM framework is a powerful tool for researchers, pro-
viding different approaches to address major research 

processes. Within the LVM framework, exploratory and 
confirmatory methods represent opposite ends of a con-
tinuum, and researchers often need support to navigate this 
continuum effectively. The challenge lies in finding an 
approach that can comprehensively cover the entire spec-
trum. Recently, regularization methods have been developed 
to provide researchers with greater flexibility in integrating 
varying levels of substantive knowledge and accommodating 
a broader range of the confirmatory-exploratory continuum. 
This research builds upon these developments by introduc-
ing predictors and regularizations to two additional param-
eter matrices: structural and differential coefficients. The 
outcome is a comprehensive framework, where researchers 
can apply different regularizations to these parameter matri-
ces individually or collectively, and in full or in part.

With PCLVM, applied researchers can design a variety of 
research studies for different purposes, depending on the 
combinations of different regularizations. The attractiveness 
of the proposed framework was demonstrated through a 
variety of typical cases that can be readily estimated and 
widely encountered in practice. The diversity of research 
designs enhances the versatility of this approach, making it 
a valuable tool for addressing a wide array of research ques-
tions and hypotheses in different contexts. For methodolo-
gists, PCLVM provides more flexibility when there’s 
uncertainty related to any of the four parametric matrices. 
One can also explore different combinations of regulariza-
tions for their own purpose under the framework. Through 
both simulation studies and real-data analysis, PCLVM 
demonstrates clear advantages against ESEM. Specifically, 
ESEM can only be implemented in two of the eight cases, 
with meaningful results in one case. PCLVM also 

Table 3. Model fit of different models.

Model RMSE CFI TLI SRMR BIC LLK DF

PCLVM-Case 1 0.059 0.803 0.787 0.048 116449.8 −57629.23 1119
PCLVM-Case 2 0.04 0.906 0.893 0.048 119206 −58816.44 1069
PCLVM-Case 6 0.035 0.931 0.922 0.032 105895.2 −52237.38 974
ESEM-Case 1 0.064 0.761 0.741 0.057 153097.2 −75868.94 1202

Table 4. Significant loading and structural coefficient estimates.

Item F1 F2 F3 Var F1 F2 F3

Y1 0.774 X1 −0.060
Y2 0.564 0.116 0.081 X2

Y3 0.720 X3 −0.049
Y4 0.625 0.142 X4

Y5 0.820 X5

Y6 0.717 X6

Y7 0.736 X7

Y8 0.820 X8 0.079
Y9 0.748 0.131 X9 −0.027
Y10 0.739 X10 −0.050
Y11 0.755 X11 0.049
Y12 0.799 X12 0.040 −0.040
Y13 0.734 X13 20.111 20.152 20.218
Y14 0.565 X14 −0.084 −0.044 −0.041
Y15 0.696 X15 −0.021 −0.021 0.017
Y16 0.149 0.275 X16 −0.043 −0.052 −0.038
Y17 0.793 X17 20.177 20.120 −0.073
Y18 0.693 X18 −0.078 −0.079 −0.028
Y19 0.603 X19 0.227 0.370 0.156
Y20 0.611 X20

Y21 −0.130 0.760 X21 −0.065 0.032 −0.061
Y22 0.795 X22 −0.031
Y23 0.203 0.147 0.453 X23 20.115 20.205 20.144
Y24 0.798 X24 −0.036 −0.014
Y25 0.835 X25 −0.072 −0.067
Y26 −0.128 0.538 X26 0.041 0.096 −0.027
Y27 0.728

Note. Only significant estimates are presented; Major loadings in measurement 
part are underscored; Absolute values above .1 in structure part are 
highlighted.
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outperforms ESEM in all cases with either simulated or real- 
life data. However, existing population models for data gen-
eration are relatively simple, and the performance of 
PCLVM under more complex situations remains 
questionable.

In terms of future directions, the framework is scalable 
and can be readily extended to accommodate categorical 
responses, missing data, and other psychometric issues, 
similar to the extension of the PCFA models to generalized 
PCFA models (Chen, 2021b). Additionally, a significant 
number of the designs can be further extended by incorpo-
rating the mediation or moderation analysis. These are two 
important techniques that can enhance interpretability and 
causality in statistical inference (Hayes, 2017). These techni-
ques can also be used in combination to investigate sophisti-
cated causal pathways and identify nuanced patterns under 
complex settings. But mediation and moderation analyses 
with latent variables are challenging by themselves, less to 
mention the incorporation of regularizations at the struc-
tural and measurement levels. Moreover, one should exer-
cise caution regarding identification issues when the 
unspecified pattern is complex or there is an abundance of 
unspecified parameters.

Finally, the Bayesian implementation based on MCMC 
can be time consuming and less efficient, especially for 
large-scale models with numerous items, factors, and/or pre-
dictors. For instance, models with sample sizes like those in 
real-life data analysis will take more than one minutes for 
10,000 iterations, even with the effective Gibbs sampler, on 
a PC with an Intel Core i7 CPU. Investigation of more effi-
cient algorithms for Bayesian inference such as variational 
approximation (e.g., Neal & Hinton, 1998; Saul & Jordan, 
1995) is desirable in the future. Recent research has high-
lighted the value of mean-field variational methods, intro-
duced by Hinton and Van Camp (1993), under the context 
of factor analysis. Khan et al. (2010) introduced the vari-
ational expectation-maximization algorithm for fitting factor 
analysis models, and Wang et al. (2020) expanded upon this 

by integrating the method with a regularization approach. 
When combined with efficient variational methods, the 
potential benefits of the PCLVM framework can be fully 
unlocked, especially to address the perceived opaqueness 
nature of machine-learning algorithms for large scale models 
or big data.
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Appendix A. 

Full Conditional Distributions for Gibbs Sampler

For item j, denote ~a��j as the complement of a��j such that a��j ⨁~a��j ¼
aj where ⨁ denotes a direct sum. Denote the corresponding part of F 
associated with a��j and ~a��j as F�� and ~F��, respectively. Denote v−j ¼

ðvj1, � � � , vj, j−1, vj, jþ1, � � � , vjJÞ
T as the jth column vector of V without 

the diagonal term; V−jj is denoted as the (J − 1) � (J − 1) submatrix of 
V without the jth row and column. Finally, set v�jj ¼ vjj − vT

−jV
−1
−jjv−j:

Note that v�jj ¼ vjj when V is diagonal (i.e., no LD).
The posterior distribution for a��j conditional on everything else is:

a��j jrest � N l��A , R��A
� �

, (A1) 

with:

R��A ¼ R−1
Aj þ v�−1

jj F��ð Þ
0F��

h i−1
, (A2) 

and

l��A ¼ R��A F��ð Þ
0 Yj − ~F��~a��j − Xhj

� �
þ lAjR

−1
Aj

h i
: (A3) 

Similarly, denote ~a�j as the complement of a�j such that a�j ⨁~a�j ¼
aj, with F� and ~F� as the corresponding part of F associated with a�j 
and ~a�j , respectively. The posterior distribution for a�j is:

a�j jrest � N l�A, R�A
� �

, (A4) 

with:

R�A ¼ T−1
Aj þ v�−1

jj F�ð Þ0F�
h i−1

, (A5) 

TAj ¼ diag s2
Aj1, :::, s2

AjK�j

� �
, (A6) 

and

l�A ¼ R�A F�ð Þ0 Yj − ~F�~a�j − Xhj

� �
: (A7) 

12 CHEN AND ZHANG

https://doi.org/10.1080/10705511.2020.1854763
https://doi.org/10.1080/00273171.2021.1925520
https://doi.org/10.1080/00273171.2021.1925520
https://doi.org/10.1080/10705511.2022.2039660
https://doi.org/10.1080/10705511.2022.2039660
https://doi.org/10.3758/s13428-022-01884-7
https://doi.org/10.1037/met0000293
https://doi.org/10.3102/1076998617700598
https://doi.org/10.3102/1076998617700598
https://doi.org/10.1080/10705511.2016.1257353
https://doi.org/10.1080/10705511.2016.1257353
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1145/168304.168306
https://doi.org/10.1145/168304.168306
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/s11336-017-9566-9
https://timssandpirls.bc.edu/timss2019/questionnaires/pdf/T19_StuQ_IntSc_8.pdf
https://timssandpirls.bc.edu/timss2019/questionnaires/pdf/T19_StuQ_IntSc_8.pdf
https://doi.org/10.1080/10705511.2016.1154793
https://doi.org/10.1080/10705511.2016.1154793
https://doi.org/10.1016/j.jmva.2012.02.010
https://doi.org/10.1016/j.jmva.2012.02.010
https://doi.org/10.1214/10-BA607
https://doi.org/10.1080/00273171.2016.1168279
https://doi.org/10.1080/00273171.2016.1168279
https://doi.org/10.1037/a0026802
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.48550/arXiv.2005.13107


The posterior distribution of s−2
Ajk follows the inverse Gaussian 

distribution:

s−2
Ajkjrest � Inv − Gaussian l0 ¼

ffiffiffiffiffiffiffiffiffiffi
k2

Avjj

a2
jk

s

, k0 ¼ k2
A

0

@

1

A, (A8) 

for k ¼ 1, :::, K�j , and

k2
Ajrest � Gamma aA þ

XJ

j¼1
K�j , bA þ

XJ

j¼1

X
K�j

k¼1
s2

Ajk=2

0

@

1

A: (A9) 

The posterior distribution for hj is:

hjjrest � N l�H , R�H
� �

, (A10) 

with

R�H ¼ T−1
Hj þ v�−1

jj XX0
h i−1

, (A11) 

THj ¼ diag s2
Hj1, :::, s2

HjP

� �
, (A12) 

and
l�H ¼ R�HX0 Yj − Fajð Þ: (A13) 

Meanwhile, the posterior distribution of s−2
Bjp follows the inverse 

Gaussian distribution:

s−2
Hjpjrest � Inv − Gaussian l0 ¼

ffiffiffiffiffiffiffiffiffiffi
k2

Hvjj

h2
jp

s

, k0 ¼ k2
H

0

@

1

A, (A14) 

forp ¼ 1, :::, P, and 

k2
Hjrest � Gamma aH þ JP, bH þ

XJ

j¼1

XP

p¼1
s2

Hjp=2

0

@

1

A: (A15) 

When V is diagonal,
v−1

jj jrest � Gamma
�
aV þ N þ K þ P½ �=2, bV

þ
h

Sj þ
�

a�j
�0

TAja�j þ h0 jTHjhj

i
=2
�

,
(A16) 

with Sj ¼ Yj − Faj − Xhj
� �0 Yj − Faj − Xhj

� �
: When V is a nondiagonal 

matrix with local dependence, an efficient block Gibbs sampler can be imple-
mented by assigning double exponential priors to the off-diagonal elements, 
as shown in the PCFA literature (Chen, 2020, 2021b; Chen et al., 2021).

Moreover,

F � N R�F YV−1Aþ XB0U−1ð Þ, R�F
� �

, (A17) 

with

R�F ¼ U−1 þ A0VA½ �
−1
: (A18) 

On the structural level, the posterior distribution for vec Bð Þ can be 
entirely regularized:

vec Bð ÞjU, rest � N l�B, U �R�B

� �
, (A19) 

with:

R�B ¼ T−1
B þ X0X

� �−1, (A20) 

and

l�B ¼ R�BX0F
� �0, (A21) 

with
TB ¼ diag s2

B1, :::, s2
BP

� �
: (A22) 

Meanwhile, the posterior distribution of s−2
Bp follows the inverse 

Gaussian distribution:

s−2
Bp jrest � Inv − Gaussian l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

B
b0pU−1bp

s

, k0 ¼ k2
B

0

@

1

A, (A23) 

for p ¼ 1, :::, P, and

k2
Bjrest � Gamma aB þ P, bB þ

XP

p¼1
s2

Bp=2

0

@

1

A: (A24) 

U−1jrest �Wishart½dU þ N þ P, RU þ F − XB0Þ0ðF − XB0
� �

þ B0TBB �,
(A25) 

In Case 7, the disturbances are uncorrelated, which means there are 
only diagonal elements in U:

u−1
kk jrest �Gamma½aU þ N þ Pð Þ=2, bU þ Fk − Xbk

0ð Þ
0 Fk − Xbk

0ð Þ

þ bk
0TBbk�,

(A26) 

where bk is the kth row of B:
The posterior distribution for B�� is:

B��jU, rest � N l��B , U �R��B

� �
, (A27) 

with:

R��B ¼ R−1
B þ X0X

� �−1, (A28) 

and

l��B ¼ R��B X0Fþ R−1
B lB

� �� �0
: (A29) 

Meanwhile,

U−1jrest �Wishart½dU þ N þ P, RU þ F − XB0Þ0ðF − XB0
� �

þ B − lBð ÞRB B − lBð Þ
0�:

(A30) 

The highest posterior density (HPD) interval (Box & Tiao, 1973) 
is used to characterize the uncertainty of estimates. The conver-
gence of the Markov chains is determined using the estimated 
potential scale reduction (EPSR) value (Gelman, 1996), which is the 
ratio of the weighted average of the between- and within-chain 
variance to the within-chain variance. When the ratio gets smaller 
than 1.1, the chains are usually considered convergent and station-
ary (Gelman et al., 2004). Model fit can be evaluated using the 
posterior predictive p or PP-p value (Gelman et al., 1996; Meng, 
1994). Since the Bayesian Lasso was employed as a means for 
model selection, the PP-p value used here should be treated as 
complementary, which is usually considered acceptable when the 
value is not far away .5.
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Appendix B. 

Population Models in Simulation Studies

Figure B1. Population model without LD.

Figure B2. Population model with LD.
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Appendix C 

Appendix D. 

Significant Differential Coefficient Estimates in TIMSS

Table C1. Measurement part and structural part in TIMSS.

Item Code Content Var Code Content

Y1 BSBM16A enjoy learning mathematics X1 BSBG03 often speak< lang of test> at home
Y2 BSBM16B wish have not to study math X2 BSBG04 amount of books in your home
Y3 BSBM16C math is boring X3 BSBG05A home possessncomputer tablet
Y4 BSBM16D learn interesting things X4 BSBG05B home possessnstudy desk
Y5 BSBM16E like mathematics X5 BSBG05C home possessnown room
Y6 BSBM16F like numbers X6 BSBG05D home possessninternet connection
Y7 BSBM16G like math problems X7 BSBG05E home possessnown mobile phone
Y8 BSBM16H look forward to math class X8 BSBG05F home possessn<country specific>
Y9 BSBM16I favorite subject X9 BSBG05G home possessn<country specific>
Y10 BSBM19A usually do well in math X10 BSBG05H home possessn<country specific>
Y11 BSBM19B mathematics is more difficult X11 BSBG06A highest lvl of edu of< parent a>
Y12 BSBM19C mathematics not my strength X12 BSBG06B highest lvl of edu of< parent b>
Y13 BSBM19D learn quickly in mathematics X13 BSBG07 how far in edu do you expect to go
Y14 BSBM19E math makes nervous X14 BSBG08A <parent a> born in< country>
Y15 BSBM19F good at working out problems X15 BSBG08B <parent/ b> born in< country>
Y16 BSBM19G good at mathematics X16 BSBG10 how often absent from school
Y17 BSBM19H mathematics harder for me X17 BSBG11A how oftenntired
Y18 BSBM19I math makes confused X18 BSBG11B how oftennhungry
Y19 BSBM20A mathematics will help me X19 BSBM15 mathnwork on your own
Y20 BSBM20B need math to learn other things X20 BSBM26AA mathnhow often teacher give homework
Y21 BSBM20C need math to get into university X21 BSBM26BA mathnhow many minutes spent on homework
Y22 BSBM20D need math to get the job I want X22 BSBM27AA mathnextra lessons to excel last 12 month
Y23 BSBM20E job involving mathematics X23 BSBM27AA mathnextra lessons to keep up last 12 month
Y24 BSBM20F get ahead in the world X24 BSBM27BA mathnextra lessons how many month
Y25 BSBM20G more job opportunities X25 ITSEX sex of students
Y26 BSBM20H parents think math important X26 BSDAGE students age
Y27 BSBM20I important to do well in math

Note. BSBM27AA is nominal and split into two variables.

Table D1. Significant differential coefficients.

X2 X3 X4 X5 X13 X16 X17 X18 X19 X20 X21 X23

Y1 .044
Y2 −.047
Y3 −.035
Y4 −.040
Y7 −.032
Y8 −.030 .044
Y9 .041 .030 −.032
Y10 .050 −.033
Y12 2.059
Y13 .050 .037
Y14 2.057
Y15 .034 .051 −.042
Y18 −.029 −.033
Y19 .088 −.039 .058
Y20 −.042 .038
Y21 −.076 .039 −.037
Y22 .037 −.033 2.059
Y23 2.054 2.093
Y24 .045
Y26 .033 2.074 −.043
Y27 .041

Note. Absolute values above .05 are highlighted. Items and variables with no differential coefficients are not displayed.
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